The automated plant will produce new materials for drug discovery and materials science through a combination of established equipment and open hardware components. (Foto: Patrick Hodapp, KIT)Patrick Hodapp, KIT
Automated Chemical Synthesis: Reliable Production and Rapid Knowledge Gain

August 4, 2021

One of the most modern infrastructures for automated process control in chemistry is being built by the Karlsruhe Institute of Technology (KIT) together with BASF: The facility will initially produce new substances in parallel for applications in fields ranging from biology to materials science. In the long term, the facility will also enable a high-throughput process for chemical reactions. KIT is investing about four million euros in this project. The facility is located in the Karlsruhe Nano Micro Facility (KNMFi) and is open to internal and external scientists.

Press Release 072/2021
Keine festen Wände, sondern freistehende 3D-Flüssigkeitswände: Sie haben den Vorteil, selbstreparierend und flexibel zu sein, und können Komponenten aus der eingeschlossenen Flüssigkeit extrahieren. (Bildquelle: Johannes Scheiger, KIT)Johannes Scheiger, KIT
Materialtechnologie: Freistehende Wände aus Wasser

June 25, 2021

Seit Menschengedenken werden Flüssigkeiten in festen Behältnissen wie Krügen oder Bechern aus Keramik, Glas oder Kunststoff gelagert. Der feste Behälter dient hierbei lediglich dazu, das Entweichen der Flüssigkeit zu verhindern, und besitzt keine weitere Funktionalität. Ein Forschungsteam des Karlsruher Instituts für Technologie (KIT) konnte nun in einer Studie zeigen, dass reines Wasser auf modifizierten Oberflächen in der Lage ist, Flüssigkeiten wie ein fester Behälter einzugrenzen. Dabei können das Wasser und die eingegrenzte Flüssigkeit beliebige Formen einnehmen.

Als Flüssigkeit verfügt die Wasserbarriere zudem über nützliche Eigenschaften, über die ein Feststoff nicht verfügt, denn Flüssigkeiten sind selbstreparierend und in der Lage, Moleküle aus der eingegrenzten Flüssigkeit zu extrahieren. Die Forschungsarbeiten sind am KIT im Exzellenzcluster 3D Matter Made to Order eingebettet. Die Ergebnisse der Studie wurden in der Zeitschrift Advanced Materials veröffentlicht (DOI: 10.1002/adma.202100117).

News article
Microorganisms feel at ease in biofilms. In the microscope image, they are marked in different colors. (Photo: Ahmed Zoheir, KIT)Ahmed Zoheir, KIT
Bioeconomy: Taking Microbes out of Dark and into the Light

June 15, 2021

Microorganisms are the oldest, most abundant, and most diverse life forms on earth and offer enormous potential for biotechnological applications. To date, however, only a fraction of them could be isolated and cultivated. The “MicroMATRIX” research project, funded with EUR 1.5 million by the German Federal Ministry of Education and Research and led by Karlsruhe Institute of Technology (KIT), aims to shed more light on the microbial darkness by developing a cultivation pipeline from environmental samples for microorganisms with biotechnological relevance that could not be cultivated before.

Press Release 056/2021
Designed elastic metamaterial structure made of a single linear elastic material. (Illustration: Dr. Yi Chen, KIT)Dr. Yi Chen, KIT
Novel Materials: Sound Waves Traveling Backwards

June 2, 2021

Acoustic waves in gases, liquids, and solids usually travel at an almost constant speed of sound. So-called rotons are an exception: their speed of sound changes significantly with the wavelength, and it is also possible that the waves travel backwards. Researchers at Karlsruhe Institute of Technology (KIT) are studying the possibilities of using rotons in artificial materials. These computer-designed metamaterials, produced by ultra-precise 3D laser printing, might be used in the future to manipulate or direct sound in ways that have never been possible before. A report on the researchers’ work has been published in Nature Communications. (DOI: 10.1038/s41467-021-23574-2) 

Press Release 051/2021
PUF core for the unambiguous identification of a component or the secure encryption of information. (Photo: Alexander Scholz, HS Offenburg and KIT).Alexander Scholz, HS Offenburg and KIT
Printed Circuits Protect Sensors


May 3, 2021
Electronic sensors can benefit many industrial applications, such as automotive engineering. However, they have to be protected from attacks and falsification. The new joint project entitled “sensIC” aims to integrate printed electronics and silicon components directly into products in order to secure sensors. At the Karlsruhe Institute of Technology (KIT), researchers are developing a key component for this: printed security circuits with dedicated hardware-based functions, so-called Physical Unclonable Functions (PUFs). The Federal Ministry of Education and Research is funding “sensIC” with a total of 2.9 million euros. The industry partners are investing a further 1.35 million euros in this project.

Press Release 040/2021